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Finite Concrete Logics: Their Structure and
Measures on Them
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After making a brief survey of results on finite concrete logics obtained during
the last 16 years, we present new ones due to the authors. We especially concentrate
on developing the duality theory and handling problems of extending measures
and signed measures.

1. INTRODUCTION

Orthomodular posets (OMPs) (Kalmbach, 1983) and a number of more
general structures (orthoalgebras, D-posets, etc.) were introduced to general-

ize the logical approach to the foundations of quantum mechanics due to G.

Birkhoff and J. von Neumann. Sub-OMPs of the Boolean algebra of all

subsets of a set are known as concrete logics. As all OMPs can, the latter

can serve as domains for measures and signed measures, which has resulted

in the creation of the so-called generalized measure theory (Gudder, 1979,
1984) generalizing the classical one for s -algebras. Finite concrete logics

provide new subjects for combinatorial and measure-theoretic investigation.

Examples of finite concrete logics have surely been of interest to almost

everyone who has ever dealt with orthomodular structures. Still, finite con-

crete logics have remained a little-studied area, as many investigators have

not gone further than considering counterexamples.
Here, we describe some general results on finite concrete logics obtained

since 1980 (in particular, by the authors). In the subsequent sections, we

contribute to developing the general theory. The proofs are omitted and will

appear elsewhere (e.g., Ovchinnikov, 1996).
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Let V be a set and 3( V ) the Boolean algebra of all subsets of V . A

concrete logic (c.l.) (see, e.g., Sherstnev, 1968; Gudder, 1979) on V is a

subset % of 3( V ) satisfying (1) V P %; (2) X P % Þ V \X P %; (3) X, Y
P %, X ù Y 5 0¤¤ Þ X ø Y P %.

A finitely orthoadditive mapping from % to [0, 1 ` ) (resp., R) is called

a measure [resp., a signed measure (s.m.)] on %. A measure m on % is called

a state in case m ( V ) 5 1. A state m on % is called pure if m is an extreme

point of the convex set of all states on % and two-valued if m (%) 5 {0, 1}.

Let v P V . Define the two-valued state m w on % as

m v (X ) 5 H 0 if v ¸ X

1 if v P X
(X P %)

The m w is called the point state on % defined by v .

Let n, m P N. Define a c.l. +n
m (Prather, 1980) on {1, . . . , nm} by

+n
m 5 {X , {1, . . . , nm} | cardX [ 0 (modm)}

Next, suppose that n $ 3. Prather (1980) showed that the C m
nm m-element

subsets of {1, . . . , nm} are generated by complementation of disjoint unions

from the nm 2 1 subsets {1, . . . , m}, . . . , {nm-m, . . . , nm 2 1}, {nm
2 m 1 1, . . . , nm 2 1, 1}, . . . , {nm 2 1, 1, . . . , m 2 1}. This in
particular means that every s.m. on +n

m uniquely extends to an s.m. on 3({1,

. . . , nm}). Another proof of the latter result was obtained by Sultanbekov

(1992a), who also showed that every pure state on +n
m is either point or of

the form F l | +n
m for some l P {1, . . . , nm}, where F l is an s.m. on 3({1,

. . . , nm}) defined as

F l ({ v }) 5 5
1

m (n 2 1)
if v Þ l

2
m 2 1

m (n 2 1)
if v 5 l

( v P {1, . . . , nm})

In particular, every two-valued state on +n
m is point. Also (Sultanbekov,

1992a), if m is a state on +n
m taking exactly two different values on the m-

element subsets of {1, . . . , nm}, then there exist unique l P {1, . . . ,

nm} and t P [0, 1/n) ø (1/n, 1/(n 2 1)] such that m 5 n l ,t | +n
m, where n l ,t

is an s.m. on 3({1, . . . , nm}) given by

n l , t({ v }) 5 5 1 2 t 1 n 2
1

m 2 if v 5 l ,

t

m
if v Þ l

( v P {1, . . . , nm})
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Ovchinnikov (1985) (see also Sultanbekov, 1992a) proved that for every

authomorphism u of (+n
m, , ) as a poset there exists a unique permutation ù

of {1, . . . , nm} with u (X ) 5 ù (X ) (X P +n
m).

Let n, L P N, n $ 2, and L $ 2. Put N 5 nL and V 5 {0, . . . ,

N 2 1}. Note that V is an abelian group with respect to the addition modulo

N. Let S be the least, with respect to inclusion, c.l. on V containing all sets

of the form k 1 {0, . . . , L 2 1}, where k P V (Gudder and Marchand,

1980). Gudder and Marchand (1980) (see also Ovchinnikov, 1992) proved

that every s.m. on S extends to an s.m. on 3( V ). Ovchinnikov (1992) showed
that if n $ 3 or n 5 L 5 2, then every measure on S extends to a measure

on 3( V ), and if n 5 2,L $ 3, then there exists a measure on S which does

not extend to a measure on 3( V ).

Let V be a finite set and % a c.l. on V . % is called regular if every s.m.

on % extends to an s.m. on 3( V ) and positive if every measure on % which

extends to an s.m. on 3( v ) also extends to a measure on 3( V ) (Ovchinnikov,
1994a). Let V (%) denote the real vector space of all s.m.’ s on %.

Now, let us give a brief account of the duality theory of finite c.l.’s as

in Ovchinnikov (1994a). Put } 5 { m P V (3( V )) | m ( V ) 5 0}. For arbitrary

S , } and T , 3( V ) put

S 8 5 {X P 3( V ) | " m P S ( m (X ) 5 0)}

T 8 5 { m P } | " X P T( m (X ) 5 0)}

Obviously S 8 is a c.l. on V , and T 8 is a linESCear subspace of }. The couple

of mappings 8 : 3(}) ª 3(3( V )) and 8 : 3(3( V )) ª 3(}), 3(}), and

3(3( V )) being ordered by the inclusion is a Galois correspondence. S P
3(})(T P 3(3( V ))) is called closed if S 5 S 5 S 8 8 (resp., T 5 T 8 8 ). If %
is closed, then there exists m P % 8 (called polarifier for %) with % 5 { m } 8 .
The following three conditions are equivalent:

(i) % is regular.

(ii) dim% 8 1 dimV (%) # card V .

(iii) dim% 8 1 dimV (%) 5 card V .

If % is positive, then % is closed. Even for card V 5 6, there exist a closed

nonpositive, a positive nonregular, and a regular nonclosed c.l. on V .

Sultanbekov (1992b, 1993) examined representations as c.l.’s for OMPs

whose Greechie diagrams are n-polygons with three atoms on each side (see
also Ovchinnikov, 1985, 1994b). Sultanbekov (1995) introduced a notion of

a ª bestº extension for an s.m. on a finite c.l. The well-known theorem by

G. Birkhoff on doubly stochastic matrices may be viewed as a result on

measures on a suitable finite c.l. (Ovchinnikov 1985, 1994a).
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2. THE DUALITY

Let V be a finite set again, and % a c.l. on V .

Definition 2.1. A set X , V is called %-strange if Y , ¤ X for every Y
P % \ {0¤}. Let St(%) denote the set of all %-strange subsets of V .

Let a (%) stand for the set of all atoms in % (i.e., minimal, with respect

to inclusion, elements of % \ {0¤}). Every element of a (%8 8 ) \% as well as every
set of the form X \ { v }, where X P a (%), v P X, can serve as an example

of an %-strange set.

Definition 2.2. % is called locally positive if for every X P St(%) there

exists m P % 8 satisfying m ({ v }) . 0 for all v P X.
Obviously if % is locally positive, then % is closed.

Theorem 2.3. If % is positive, then % is locally positive.

Let L , R2 be finite. Denote by D ( L ) the least, with respect to inclusion,

c.l. on L containing all sets of the form p 2 1
1 (A ), p 2 1

2 (A ), or ( p 1 1 p 2)
2 1

(A ), wherein p 1(x, y) 5 x, p 2(x, y) 5 y ((x, y) P L ), and A , R is Borel.

It is easy to verify that D ({0, . . . , n 2 1} 3 {0, . . . , m 2 1}) is not locally
positive whenever n $ 4 and m $ 4. By Theorem 2.3, the c.l. is not positive.

This negatively solves the long-standing and problem discussed during the

Second Winter School on Measure Theory at Liptovsky Jan of whether every

D ( L ) is positive.

Definition 2.4. Let X , V . The polar rank of X with respect to %,
pr%(X ), is defined as pr%(X ) 5 dimVX , where VX 5 { m | 3(X ) | m P % 8 }.

Definition 2.5. % is called filled if pr%(X ) 5 (cardX ) 2 1 for every X
P a (%).

Theorem 2.6. % is filled if and only if " X P a (%) " v P X $ m P %
8 " t P X \ { v }( m ({ t }) . 0).

Corollary 2.7. If % is locally positive, then % is filled.

Corollary 2.8. If % is locally positive, then cardX # (dim% 8 ) 1 1 for

all X P a (%).

Note that D ({0, 1, 2, 3}2) is closed and filled, though not locally positive.

The closedness and the filledness of % do not entail each other even in the

case card V 5 6.

Theorem 2.9. D ({0, . . . , n 2 1} 3 {0, . . . , m 2 1}) is regular for

all n, m P N.

The proof (which we omit) attracts the Zerbe±Gudder theorem on the

additivity of integrals (Zerbe and Gudder, 1985).
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Remark 2.10. It follows from Navara and Ptak (1983) that every two-

valued state on D ( L ) is point for every finite L , R2.

3. THE ABSTRACT CLOSEDNESS

As in Section 2, let V be a finite set, and % a c.l. on V .

Definition 3.1. Let G be an abelian group. % is called G-abstractly closed
if there exists a mapping F: V ª G with % 5 {X , V | ( v P X F ( v ) 5 0}.

Note that % is closed if and only if % is (R, 1 )-abstractly closed. Next,

+n
m is (Zm , 1 )-abstractly closed for all n, m P N, but is never closed provided

that n $ 2 and m $ 2. If G is an abelian group, then % is G-abstractly closed

just in case % is the kernel (Navara, 1993, n.d.; Mayet and Navara, 1995)

of a G-valued measure m on 3( V ) with m ( V ) 5 0. There exist c.l.’s on finite

sets which are not G-abstractly closed for any Abelian group G (Navara,

n.d.; see also Ovchinnikov, 1996).

Definition 3.2. % is called symmetric if X, Y P % Þ X 1 Y P %, 1
being the symmetric difference.

Denote by Z `
2 the direct sum of countably many copies of (Z2, 1 ).

Now, we recall the rules of the game Nim. Two players participate.

There are several heaps, and each heap contains several things. By a move,

a player chooses a heap and takes away an arbitrary number of things from

it only, at least one and perhaps all. The players alternate their moves. The

player who makes the last move wins.
A position, in Nim, is the corresponding finite set of heaps. Let A and

B be the players, and let A begin. Let P be a fixed position in which B
possesses a winning strategy. Denote by +( P ) the set of all X , P such that

B has a winning strategy in the position X. Let us show that +( P ) is a c.l.

on P . We will do this without making use of the generally well-known

description of the winning strategies in Nim.
(1) By definition, P P +( P ). (2) Let X P +( P ). Suppose that P \X ¸

+( P ). Then A has a winning strategy in P \X. Let us show that A has a

winning strategy in P , and this will be a contradiction. Let A begin in

accordance with his winning strategy in P \X and separately play within X
or P \X using winning strategies for B or A, respectively. It is clear that A
will win. (3) Let X, Y P +( P ) satisfy X ù Y 5 0¤. Then X ø Y P +( P ), as
B can separately play within X or Y according to winning strategies for B.

Recall that two concrete logics, %1 on a set V 1 and %82 on a set V 2, are

referred to as isomorphic ones if there exists a bijection f : V 1 ª V 2 satisfying

X P %1 Û f (X ) P %2 for every X , V 1.
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Theorem 3.3. The following three conditions are equivalent:

1. % is symmetric.

2. % is Z `
2 -abstractly closed.

3. There exists a position P in Nim such that B has a winning strategy

in P and % is isomorphic to +( P ).

4. APPLYING A COMPUTER

We refer to Sultanbekov (1996), where the results of a computer treat-

ment of finite c.l.’ s are presented.

5. OPEN QUESTIONS

5.1. Is every locally positive c.l. on a finite set positive?
5.2. Is every D ( L ), L , R2 being finite, (a) regular? (b) closed? (c) filled?

5.3. Is every c.l. on a finite set isomorphic, as an OMP, to a c.l. on a

finite set which is G-abstractly closed for some abelian group G? [This is a

version of a problem posed by Navara (n.d.).]

5.4. Which c.l.’s on finite sets can be represented with combinatorial

games similarly to symmetric ones?
5.5. Give a direct ª playingº proof of that +( P ) is symmetric.

5.6. Can every s.m. on a c.l. on a finite set be represented as a linear

combination of two-valued states on the c.l.?
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